A THREE-STAGE APPROACH FOR DAY-AHEAD UNIT COMMITMENT CONSIDERING ALTERNATING CURRENT POWER FLOW EQUATIONS
About this article
Received: 13/03/25                Revised: 26/06/25                Published: 27/06/25Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] D. D. Nguyen, T. S. Vo, and N. V. Pham, "A comparison of linear load flow models for 39-bus New England transmission system," TNU J. Sci. Technol, vol. 229, no. 14, pp. 117–128, Oct. 2024, doi: 10.34238/tnu-jst.10704.
[2] W. S. Sifuentes and A. Vargas, "Hydrothermal Scheduling Using Benders Decomposition: Accelerating Techniques," IEEE Trans. Power Syst., vol. 22, no. 3, pp. 1351–1359, Aug. 2007, doi: 10.1109/TPWRS.2007.901751.
[3] Y. Fu, M. Shahidehpour, and Z. Li, ‘"-Constrained Unit Commitment With AC Constraints," IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1001–1013, May 2005, doi: 10.1109/TPWRS.2005.846076.
[4] Y. Fu, M. Shahidehpour, and Z. Li, "AC Contingency Dispatch Based on Security-Constrained Unit Commitment," IEEE Trans. Power Syst., vol. 21, no. 2, pp. 897–908, May 2006, doi: 10.1109/TPWRS.2006.873407.
[5] N. Amjady and M. R. Ansari, "Hydrothermal unit commitment with AC constraints by a new solution method based on benders decomposition," Energy Convers. Manag., vol. 65, pp. 57–65, Jan. 2013, doi: 10.1016/j.enconman.2012.07.022.
[6] A. Nasri, S. J. Kazempour, A. J. Conejo, and M. Ghandhari, "Network-Constrained AC Unit Commitment Under Uncertainty: A Benders’ Decomposition Approach," IEEE Trans. Power Syst., vol. 31, no. 1, pp. 412–422, Jan. 2016, doi: 10.1109/TPWRS.2015.2409198.
[7] C. E. Murillo-Sánchez and R. J. Thomas, "Thermal Unit Commitment with a Nonlinear AC Power Flow Network Model," in The Next Generation of Electric Power Unit Commitment Models, vol. 36, in International Series in Operations Research & Management Science, B. F. Hobbs, M. H. Rothkopf, R. P. O’Neill, and H. Chao, Eds., Boston: Kluwer Academic Publishers, 2002, pp. 75–92, doi: 10.1007/0-306-47663-0_5.
[8] J. P. Ruiz, J. Wang, C. Liu, and G. Sun, "Outer‐approximation method for security-constrained unit commitment," IET Gener. Transm. Distrib., vol. 7, no. 11, pp. 1210–1218, Nov. 2013, doi: 10.1049/iet-gtd.2012.0311.
[9] D. Han, J. Jian, and L. Yang, "Outer Approximation and Outer-Inner Approximation Approaches for Unit Commitment Problem," IEEE Trans. Power Syst., vol. 29, no. 2, pp. 505–513, Mar. 2014, doi: 10.1109/TPWRS.2013.2253136.
[10] T. Le, N. V. Pham, and V. H. Trinh, "A SOCP-based formulation for short-term hydrothermal scheduling of an IEEE 24-bus system considering water-head effect," TNU J. Sci. Technol., vol. 228, no. 10, pp. 355–365, Jul. 2023, doi: 10.34238/tnu-jst.8080.
[11] R. Quan, J. Jian, and Y. Mu, "Tighter relaxation method for unit commitment based on second-order cone programming and valid inequalities," Int. J. Electr. Power Energy Syst., vol. 55, pp. 82–90, Feb. 2014, doi: 10.1016/j.ijepes.2013.08.027.
[12] Y. Bai, H. Zhong, Q. Xia, C. Kang, and L. Xie, "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, vol. 88, pp. 595–603, Aug. 2015, doi: 10.1016/j.energy.2015.05.082.
[13] F. Zohrizadeh, M. Kheirandishfard, A. Nasir, and R. Madani, "Sequential Relaxation of Unit Commitment with AC Transmission Constraints," in 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL: IEEE, Dec. 2018, pp. 2408–2413, doi: 10.1109/CDC.2018.8619609.
[14] N. V. Pham, T. H. T. Nguyen, V. H. Trinh, and Q. C. Vu, "A MILP-based formulation for thermal-wind-BESS unit commitment problem considering network power loss," TNU J. Sci. Technol., vol. 227, no. 16, pp. 85–93, Oct. 2022, doi: 10.34238/tnu-jst.6485.
[15] GAMS Development Corp., "GAMS Documentation 46," Feb. 17, 2024. [Online]. Available: https://www.gams.com. [Accessed Feb. 25, 2025].
[16] M. Sheikh et al., "Security-Constrained Unit Commitment Problem With Transmission Switching Reliability and Dynamic Thermal Line Rating," IEEE Syst. J., vol. 13, no. 4, pp. 3933–3943, Dec. 2019, doi: 10.1109/JSYST.2019.2939210.
[17] S. Babaeinejadsarookolaee et al., "The Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms," arXiv, 2019, doi: 10.48550/ARXIV.1908.02788.
DOI: https://doi.org/10.34238/tnu-jst.12302
Refbacks
- There are currently no refbacks.





