GENE SEQUENCE ANALYSIS of rbcL AND ndhF ISOLATED FROM Hoya lockii FOR SPECIES IDENTIFICATION | Ngà | TNU Journal of Science and Technology

GENE SEQUENCE ANALYSIS of rbcL AND ndhF ISOLATED FROM Hoya lockii FOR SPECIES IDENTIFICATION

About this article

Received: 18/03/25                Revised: 17/07/25                Published: 17/07/25

Authors

1. Nguyen Thi Thu Nga Email to author, TNU - University of Education
2. Nguyen Thi Thu Hang, TNU - University of Education
3. Pham Thi Ngoc anh, TNU - University of Education
4. Tran Thi Hong, TNU - University of Education
5. Nguyen Vu Bao, TNU - University of Education
6. Manivanh Yongsa, TNU - University of Education
7. Sy Danh Thuong, TNU - University of Education
8. Chu Hoang Mau, TNU - University of Education

Abstract


Hoya lockii is an endemic plant with many uses and medicinal properties. This is a rare species in Vietnam (the number of individuals in the wild is less than 50), listed in the Red Book for conservation at risk of extinction. Gene analysis, species identification, and the proposed use of barcodes are essential for preserving this valuable plant specimen. In this study, we used BLAST, BioEdit, and MEGA11 software to determine the gene region and build a phylogenetic tree of the studied species. The research team selected the rbcL and ndhF sequences with sizes of 1428 bp and 1519 bp, respectively, extracted from the chloroplast genome of H. lockii to compare with 17 species with high similarity in the NBCI. The analysis of the rbcL and ndhF gene regions indicated that the species of H.lockii is closely related to 4 species: H. hamiltoniorum, H. exilis, H. dimorpha, and H. megalaster. When using the rbcL marker, the reliability reached 80%, the ndhF marker gave a rate of 98%. With this result, the ndhF marker was proposed to be used as a barcode candidate for the identification of H. lockii species, and at the same time provided additional research data on a potential barcode for the phylogenetic analysis of plants.

Keywords


Hoya lockii; DNA Barcode; rbcL; ndhF; Species identification

References


[1] P. Van and L. V. Averyanov, “New species from Vietnam - Hoya lockii (Apocynaceae, Asclepiadoideae),” Taiwania, vol. 57, no. 1, pp. 49-54, 2012.

[2] International Union for Conservation of Nature, “IUCN Red List,” 2014. [Online]. Available: http://archive.nationalredlist.org/files/2014/10/20130509123300-iucnredlist.png. [Accessed March 6, 2025]

[3] Vietnam Plant Data Center, “New species discovery - Hoya lockii (Apocynaceae, Asclepiadoideae) in Vietnam,” 2012. [Online]. Available: https://www.botanyvn.com/cnt.asp?param=news&newsid=1443. [Accessed March 6, 2025].

[4] M. D. Logacheva, A. A. Penin, T. H. Samigullin, C. M. Vallejo-Roman, and A. S. Antonov, “Phylogeny of flowering plants by the chloroplast genome sequences: in search of a “lucky gene”,” Biochemistry (Moscow), vol. 72, pp. 1324–1330, 2007.

[5] W. J. Kress, “Plant DNA barcodes: Applications today and in the future,” Journal of Systematics and Evolution, vol. 55, no. 4, pp. 291-307, 2017.

[6] M. Manoj, J. Pavankumar, and C. H. A. Kumar, “DNA barcoding analysis and phylogenetic relationships of Indian wild coffee species,” Urkish Journal of Botany, vol. 46, no. 2, pp. 109-122, 2022.

[7] L. Jiao, T. He, E. E. Dormontt, Y. Zhang, A. J. Lowe, and Y. Yin, “Applicability of chloroplast DNA barcodes for wood identification between Santalum album and its adulterants,” Holzforschung, vol. 73, no. 2, pp. 209-218, 2019.

[8] R. E. Spangler and R. G. Olmstead, “Phylogenetic Analysis of Bignoniaceae Based on the cpDNA Gene Sequences rbcL and ndhF,Annals of the Missouri Botanical Garden, vol. 86, no. 1, pp. 33-46, 1999.

[9] M. Backlund, B. Oxelman, and B. Bremer, “Phylogenetic relationships within the Gentianales based on rbcL and ndhF sequences, with particular reference to the Loganiaceae,” American Journal of Botany, vol. 87, no. 7, pp. 1029-1043, 2000.

[10] R. A. Levin, W. L. Wagner, P. C. Hoch, M. Nepokroeff, J. C. Pires, E. A. Zimmer, and K. J. Sytsma, “Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data,” American Journal of Botany, vol. 90, no. 1, pp. 107-15, 2003.

[11] S. Jo, C. H. Mau, M. Yongsa, C. Lee, N. H. Quan, S. D. Thuong, and N. T. T Nga, “Hoya lockii chloroplast, complete genome,” ncbi.nlm.nih.gov, Feb. 1, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ NC_085235.1/. [Accessed March 8, 2025].

[12] M. Rodda and M. A. Niissalo, “Hoya hamiltoniorum chloroplast, partial genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719068.1. [Accessed March 8, 2025].

[13] W. O. Odago, “Hoya radicalis chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_067961.1. [Accessed March 8, 2025].

[14] M. Rodda and M. A. Niissalo, “Hoya verticillata chloroplast, partial genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719071.1. [Accessed March 8, 2025].

[15] W. O. Odago, “Wattakaka volubilis chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_067964.1. [Accessed March 8, 2025].

[16] W. O. Odago, “Hoya meliflua chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069571.1. [Accessed March 8, 2025].

[17] W. O. Odago, “Hoya liangii chloroplast, complete genome,” ncbi.nlm.nih.gov, Oct. 17, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/OL826865.1. [Accessed March 8, 2025].

[18] W. O. Odago, “Hoya angustifolia chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069566.1. [Accessed March 8, 2025].

[19] X. H. Tan, J. H. Wang, K. K. Zhao, Z. X. Zhu, and H. F. Wang, “Hoya pottsii chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/ nuccore/NC_042246.1. [Accessed March 8, 2025].

[20] W. O. Odago, “Hoya ovalifolia chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069563.1. [Accessed March 8, 2025].

[21] W. O. Odago, “Hoya lacunosa chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069564.1. [Accessed March 8, 2025].

[22] W. O. Odago, “Hoya kerrii chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069570.1. [Accessed March 8, 2025].

[23] M. Rodda, “Hoya diversifolia chloroplast, partial genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719073.1. [Accessed March 8, 2025].

[24] M. Rodda, “Hoya exilis chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719054.1. [Accessed March 8, 2025].

[25] W. O. Odago, “Hoya dimorpha chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_067959.1. [Accessed March 8, 2025].

[26] M. Rodda and M. A. Niissalo, “Hoya megalaster chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719063.1. [Accessed March 8, 2025].

[27] M. A. Niissalo and M. Rodda, “Jasminanthes maingayi chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ MW719056.1. [Accessed March 8, 2025].

[28] S. C. Straub, R. C. Cronn, C. Edwards, M. Fishbein, and A. Liston, “Astephanus triflorus plastid, partial genome,” ncbi.nlm.nih.gov, July 26, 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ KF539847.1. [Accessed March 8, 2025].

[29] M. A. Niissalo and M. Rodda, “Hoya lithophytica chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719058.1/. [Accessed March 8, 2025].

[30] M. A. Niissalo and M. Rodda, “Hoya coronaria chloroplast, partial genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719064.1. [Accessed March 8, 2025].

[31] W. O. Odago, “Hoya griffithii chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069565.1. [Accessed March 8, 2025].

[32] W. O. Odago, “Hoya thomsonii chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_067612.1. [Accessed March 8, 2025].

[33] W. O. Odago, “Hoya longifolia chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069560.1. [Accessed March 8, 2025].

[34] M. A. Niissalo and M. Rodda, “Hoya omlorii chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719060.1. [Accessed March 8, 2025].

[35] M. Rodda and M. A. Niissalo, “Hoya monetteae chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719053.1. [Accessed March 8, 2025].

[36] M. Rodda and M. A. Niissalo, “Papuahoya urniflora chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ MW719062.1. [Accessed March 8, 2025].

[37] M. A. Niissalo and M. Rodda, “Dischidia parasita chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719057.1. [Accessed March 8, 2025].

[38] C. Liang, J. Xu, and S. Chen, “Gymnema sylvestre chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_047175.1. [Accessed March 8, 2025].

[39] T. P. T. Nguyen, “rbcL DNA region revealed as the best DNA barcode for identification of Mahonia and Berberis species (Berberidaceae),” Academia Journal of Biology, vol. 43, no. 3, pp. 1–8, 2021, doi: 10.15625/2615-9023/15888.

[40] H. Duan, W. Wang, Y. Zeng, M. Guo, and Y. Zhou, “The screening and identification of DNA barcode sequences for Rehmannia,” Scientific Reports, vol. 9, 2019, Art. no. 17295.

[41] L. Huili, X. Wenjun, T. Tie, L. Yongliang, Z. Meng, L. Xiaoxia, Z. Xiaoxiao, W. Qun, and G. Xinhong, “The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants,” Scientific Reports, vol. 11, 2021, Art. no. 1424.

[42] X. Tianyi, L. Ranjun, L. Qian, L. Yulin, L. Hai, S. Wei, G. Meng, Z. Jiayu, and S. Jingyuan, “Application of DNA barcoding to the entire traditional Chinese medicine industrial chain: A case study of Rhei Radix et Rhizoma,” Phytomedicine, vol. 105, 2022, Art. no. 154375.




DOI: https://doi.org/10.34238/tnu-jst.12338

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved