GENE SEQUENCE ANALYSIS of rbcL AND ndhF ISOLATED FROM Hoya lockii FOR SPECIES IDENTIFICATION
About this article
Received: 18/03/25                Revised: 17/07/25                Published: 17/07/25Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] P. Van and L. V. Averyanov, “New species from Vietnam - Hoya lockii (Apocynaceae, Asclepiadoideae),” Taiwania, vol. 57, no. 1, pp. 49-54, 2012.
[2] International Union for Conservation of Nature, “IUCN Red List,” 2014. [Online]. Available: http://archive.nationalredlist.org/files/2014/10/20130509123300-iucnredlist.png. [Accessed March 6, 2025]
[3] Vietnam Plant Data Center, “New species discovery - Hoya lockii (Apocynaceae, Asclepiadoideae) in Vietnam,” 2012. [Online]. Available: https://www.botanyvn.com/cnt.asp?param=news&newsid=1443. [Accessed March 6, 2025].
[4] M. D. Logacheva, A. A. Penin, T. H. Samigullin, C. M. Vallejo-Roman, and A. S. Antonov, “Phylogeny of flowering plants by the chloroplast genome sequences: in search of a “lucky gene”,” Biochemistry (Moscow), vol. 72, pp. 1324–1330, 2007.
[5] W. J. Kress, “Plant DNA barcodes: Applications today and in the future,” Journal of Systematics and Evolution, vol. 55, no. 4, pp. 291-307, 2017.
[6] M. Manoj, J. Pavankumar, and C. H. A. Kumar, “DNA barcoding analysis and phylogenetic relationships of Indian wild coffee species,” Urkish Journal of Botany, vol. 46, no. 2, pp. 109-122, 2022.
[7] L. Jiao, T. He, E. E. Dormontt, Y. Zhang, A. J. Lowe, and Y. Yin, “Applicability of chloroplast DNA barcodes for wood identification between Santalum album and its adulterants,” Holzforschung, vol. 73, no. 2, pp. 209-218, 2019.
[8] R. E. Spangler and R. G. Olmstead, “Phylogenetic Analysis of Bignoniaceae Based on the cpDNA Gene Sequences rbcL and ndhF,” Annals of the Missouri Botanical Garden, vol. 86, no. 1, pp. 33-46, 1999.
[9] M. Backlund, B. Oxelman, and B. Bremer, “Phylogenetic relationships within the Gentianales based on rbcL and ndhF sequences, with particular reference to the Loganiaceae,” American Journal of Botany, vol. 87, no. 7, pp. 1029-1043, 2000.
[10] R. A. Levin, W. L. Wagner, P. C. Hoch, M. Nepokroeff, J. C. Pires, E. A. Zimmer, and K. J. Sytsma, “Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data,” American Journal of Botany, vol. 90, no. 1, pp. 107-15, 2003.
[11] S. Jo, C. H. Mau, M. Yongsa, C. Lee, N. H. Quan, S. D. Thuong, and N. T. T Nga, “Hoya lockii chloroplast, complete genome,” ncbi.nlm.nih.gov, Feb. 1, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ NC_085235.1/. [Accessed March 8, 2025].
[12] M. Rodda and M. A. Niissalo, “Hoya hamiltoniorum chloroplast, partial genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719068.1. [Accessed March 8, 2025].
[13] W. O. Odago, “Hoya radicalis chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_067961.1. [Accessed March 8, 2025].
[14] M. Rodda and M. A. Niissalo, “Hoya verticillata chloroplast, partial genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719071.1. [Accessed March 8, 2025].
[15] W. O. Odago, “Wattakaka volubilis chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_067964.1. [Accessed March 8, 2025].
[16] W. O. Odago, “Hoya meliflua chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069571.1. [Accessed March 8, 2025].
[17] W. O. Odago, “Hoya liangii chloroplast, complete genome,” ncbi.nlm.nih.gov, Oct. 17, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/OL826865.1. [Accessed March 8, 2025].
[18] W. O. Odago, “Hoya angustifolia chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069566.1. [Accessed March 8, 2025].
[19] X. H. Tan, J. H. Wang, K. K. Zhao, Z. X. Zhu, and H. F. Wang, “Hoya pottsii chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/ nuccore/NC_042246.1. [Accessed March 8, 2025].
[20] W. O. Odago, “Hoya ovalifolia chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069563.1. [Accessed March 8, 2025].
[21] W. O. Odago, “Hoya lacunosa chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069564.1. [Accessed March 8, 2025].
[22] W. O. Odago, “Hoya kerrii chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069570.1. [Accessed March 8, 2025].
[23] M. Rodda, “Hoya diversifolia chloroplast, partial genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719073.1. [Accessed March 8, 2025].
[24] M. Rodda, “Hoya exilis chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719054.1. [Accessed March 8, 2025].
[25] W. O. Odago, “Hoya dimorpha chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_067959.1. [Accessed March 8, 2025].
[26] M. Rodda and M. A. Niissalo, “Hoya megalaster chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719063.1. [Accessed March 8, 2025].
[27] M. A. Niissalo and M. Rodda, “Jasminanthes maingayi chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ MW719056.1. [Accessed March 8, 2025].
[28] S. C. Straub, R. C. Cronn, C. Edwards, M. Fishbein, and A. Liston, “Astephanus triflorus plastid, partial genome,” ncbi.nlm.nih.gov, July 26, 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ KF539847.1. [Accessed March 8, 2025].
[29] M. A. Niissalo and M. Rodda, “Hoya lithophytica chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719058.1/. [Accessed March 8, 2025].
[30] M. A. Niissalo and M. Rodda, “Hoya coronaria chloroplast, partial genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719064.1. [Accessed March 8, 2025].
[31] W. O. Odago, “Hoya griffithii chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069565.1. [Accessed March 8, 2025].
[32] W. O. Odago, “Hoya thomsonii chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_067612.1. [Accessed March 8, 2025].
[33] W. O. Odago, “Hoya longifolia chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_069560.1. [Accessed March 8, 2025].
[34] M. A. Niissalo and M. Rodda, “Hoya omlorii chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719060.1. [Accessed March 8, 2025].
[35] M. Rodda and M. A. Niissalo, “Hoya monetteae chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719053.1. [Accessed March 8, 2025].
[36] M. Rodda and M. A. Niissalo, “Papuahoya urniflora chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/ MW719062.1. [Accessed March 8, 2025].
[37] M. A. Niissalo and M. Rodda, “Dischidia parasita chloroplast, complete genome,” ncbi.nlm.nih.gov, July 21, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MW719057.1. [Accessed March 8, 2025].
[38] C. Liang, J. Xu, and S. Chen, “Gymnema sylvestre chloroplast, complete genome,” ncbi.nlm.nih.gov, Apr. 3, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/NC_047175.1. [Accessed March 8, 2025].
[39] T. P. T. Nguyen, “rbcL DNA region revealed as the best DNA barcode for identification of Mahonia and Berberis species (Berberidaceae),” Academia Journal of Biology, vol. 43, no. 3, pp. 1–8, 2021, doi: 10.15625/2615-9023/15888.
[40] H. Duan, W. Wang, Y. Zeng, M. Guo, and Y. Zhou, “The screening and identification of DNA barcode sequences for Rehmannia,” Scientific Reports, vol. 9, 2019, Art. no. 17295.
[41] L. Huili, X. Wenjun, T. Tie, L. Yongliang, Z. Meng, L. Xiaoxia, Z. Xiaoxiao, W. Qun, and G. Xinhong, “The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants,” Scientific Reports, vol. 11, 2021, Art. no. 1424.
[42] X. Tianyi, L. Ranjun, L. Qian, L. Yulin, L. Hai, S. Wei, G. Meng, Z. Jiayu, and S. Jingyuan, “Application of DNA barcoding to the entire traditional Chinese medicine industrial chain: A case study of Rhei Radix et Rhizoma,” Phytomedicine, vol. 105, 2022, Art. no. 154375.
DOI: https://doi.org/10.34238/tnu-jst.12338
Refbacks
- There are currently no refbacks.





