CRITICAL PARAMETERS IN PERROVSKITE La0.7Sr0.3Mn1-xMxO3 (x=0, 0.05; M=Al, Ti) | Báu | TNU Journal of Science and Technology

CRITICAL PARAMETERS IN PERROVSKITE La0.7Sr0.3Mn1-xMxO3 (x=0, 0.05; M=Al, Ti)

About this article

Received: 10/10/19                Revised: 04/05/20                Published: 11/05/20

Authors

1. Le Viet Bau Email to author, Hong Duc University
2. Trinh Thi Huyen, Hong Duc University
3. Trinh Thi Chung, Hong Duc University High school of Hoang Hoa 2
4. Tran Thi Duyen, Hong Duc University High school of Hoang Hoa Quang Xuong 4
5. Nguyen Van Dang, University of Science - TNU

Abstract


The perrovskite La0.7Sr0.3Mn1-xMxO3 (x = 0; 0.05; M = Al, Ti) was fabricated by conventional solid state physic. The critical parameters have been derived by several techniques ussing experimental magnetic data. The results show that substitution Al and Ti for Mn in La0.7Sr0.3MnO3 reduces temperature of ferro-parramangetic phase transition to 334 K; 310.6 K, respectively. The critical parameters imply that magnetic interaction in materials also changes from 3D Ising to 3D Heisenberg and tricritical mean field models with 5% Mn substituted by Al and Ti respectively. Specifically, using the modified Arrott plots (MAP) method, with x = 0, the critical values are defined as β = 0.3217; g = 1.126, these values are close to 3D Ising model. However, with 5% Al replacing Mn we have obtained β = 0.4896; g = 1.0743, these values are close to the Mean-field model. Whereas with 5% Ti replaced Mn, β = 0.3224; g = 1.1291, these values is more suitable for tricritical mean - field model. This proves that the long-distance interaction is mainly formed in the sample La0.7Sr0.3Mn0.95Al0.05O3. The values of the critical parameters obtained by the Kouvel-Fisher method show that there is not much difference from the MAP method. In addition, we have shown that the critical exponents are in good agreement with the Scalling theory.

Keywords


critical parameters; magnetocaloric; magnetic phase transitition; perovskite; manganite.

References


[1]. B. Raveau, Y. M. Zhao, C. Martin, M. Hervieu, and A. Maignan, “Mn-Site Doped CaMnO3: Creation of the CMR Effect,” J. Solid State Chem, 149, pp. 203-207, 2000.

[2]. K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M. Gapchup, B.Ravi, and S. I. Patil, “Transition-element doping effects in La0.7Ca0.3MnO3,” Phys. Rev. B, 59, p. 533, 1999.

[3]. L. Pi, S. Hebert, C. Martin, A. Maiga, and B. Raveau, “Comparison of CaMn1xRuxO3 and CaMn1-yMoyO3 perovskites,” Phys. Rev. B, 67, p. 024430, 2003.[4]. M. B. Salamon, and M. Jaime, “The physics of manganites: Structure and transport,” Rev. Mod. Phys., 73, p. 583, 2001.

[5]. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, “Giant negative magnetoresistance in perovskitelike ferromagnetic films,” Phys. Rev. Lett., 71, p. 2331, 1993.

[6]. T. D. Tran, V. B. Le, T. L. Phan, and S. C. Yu,“Room Temperature Magnetocaloric Effect in La Sr Mn- CoO3,” IEEE Transactions on Magnetics, 50(1), p. 2500504, 2014.

[7]. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, London, 1971, pp. 1-21.

[8]. J. S. Kouvel, and M. E. Fisher, “Detailed magnetic behavior of nickel near its Curie point,” Phys. Rev., 136, p. 1626, 1964.

[9]. P. T. Phong, L. T. T. Ngan, L. V. Bau, P. H. Nam, P. H. Linh, N. V. Dang, and I. J. Lee, "Study of critical behavior using the field dependence of magnetic entropy change in La0.7Sr0.3Mn1-xCuxO3 (x = 0.02 and 0.04)," Ceramics International, 43(18), pp. 16859-16865, 2017.

[10]. P. T. Phong, L. T. T. Ngan, N. V. Dang, L. H. Nguyen, P. H. Nam, D. M. Thuy, N. D. Tuan, L. V. Bau, and I. J. Lee, "Griffiths-like phase, critical behavior near the paramagneticferromagnetic phase transition and magnetic entropy change of nanocrystalline La0.75Ca0.25MnO3," Journal of Magnetism and Magnetic Materials, 449, pp. 558-566, 2018.

[11]. P. T. Phong, N. V. Dang, L. V. Bau, N. M. An, and I. J. Lee, "L andau mean-field analysis and estimation of the spontaneous magnetization from magnetic entropy change in La0.7Sr0.3MnO3 and
La0.7Sr0.3Mn0.95Ti0.05O3," Journal of Alloys and Compounds, 698, pp. 451-459, 2017.

[12]. S. M. Zaidi, A. Dhahri, E. K. Hlil, and J. Dhahri, ”Behavior of the magnetocaloric effect and critical exponents in La0.67Sr0.33Mn1− xVxO3 manganite oxide,” Journal of Solid State Chemistry, 215, pp. 193-200, 2014.

[13]. V. B. Le, M. A. Nguyen, and N. H. N. Dao, "Influence of substitution Cu for Mn on critical parameters and magnetocaloric in the La0.7Sr0.3MnO3", Journal of Science and Technology, 52(3B), pp. 159-165, 2014.

[14]. M. Kumaresavanji, C. T. Sous, A. Pires, A. M. Pereira, A. M. L. Lopes, and J. P. Araujo, “Room temperature magnetocaloric effect and refrigerant capacitance in La0.7Sr0.3MnO3 nanotube arrays,” Applied Physics Letters, 105, pp. 083110, 2014.

[15]. V. B. Le, “Influence of substitution some elements for Mn on electro-magnetic properties of perovskite (La,Sr)MnO3” Doctoral thesis for materials science – Institute of materials science, 2006.

[16]. R. M’nassri, N. Chniba-Boudjada, and A. Cheikhrouhou, "3D-Ising ferromagnetic characteristics and magnetocaloric study in Pr0.4Eu0.2Sr0.4MnO3 manganite,” Journal of Alloys and Compounds, 640, pp. 183-192, 2015.


Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved