ON OPTIMALITY CONDITIONS FOR HENIG EFFICIENT SOLUTION AND SUPPEREFFICIENT SOLUTION OF CONSTRAINED VECTOR EQUILIBRUM PROBLEMS | Hằng | TNU Journal of Science and Technology

ON OPTIMALITY CONDITIONS FOR HENIG EFFICIENT SOLUTION AND SUPPEREFFICIENT SOLUTION OF CONSTRAINED VECTOR EQUILIBRUM PROBLEMS

About this article

Published: 31/05/18

Authors

1. Dinh Dieu Hang Email to author, University of Information and Communication Technology, Thai Nguyen University
2. Tran Van Su, Quang Nam University

Abstract


This article provides a necessary and sufficient optimality condition for Henig efficient solution and superefficient solution of vector equilibrium problems with constraints (it includes set and general inequality constraints) interms of directional derivatievs in infinite-dimensional spaces. We first proof the results on general converxity of cone-convex function over a convex set given. We provide an optimality for superefficient solution.

Keywords


vector equilibrium problem with constraints, necessary and sufficient optimality conditions, Henig efficient solutions, superefficient solutions, directional derivatives, cone-convex funtions

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved