IDENTIFICATION OF SOME TYPES OF LONGAN (THROUGH LEAVES) USING IMAGE AND DEEP LEARNING TECHNOLOGY
About this article
Received: 17/11/22                Revised: 11/01/23                Published: 11/01/23Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] M. Vilasini and P. Ramamoorthy, “CNN approaches for classification of Indian leaf species using smartphones,” Comput. Mater. Contin., vol. 62, no. 3, pp. 1445–1472, 2020, doi: 10.32604/cmc.2020.08857.
[2] J. Ahmad, K. Muhammad, I. Ahmad, W. Ahmad, M. L. Smith, L. N. Smith, D. K. Jain, H. Wang, and I. Mehmood, “Visual features based boosted classification of weeds for real-time selective herbicide sprayer systems,” Comput. Ind., vol. 98, pp. 23–33, 2018, doi: 10.1016/j.compind.2018.02.005.
[3] H. A. Atabay, “Article a Convolutional Neural Network With a New,” Iioab J., vol. 7, no. October 2016, pp. 226–231, 2017.
[4] N. Srisook, O. Tuntoolavest, P. Danphitsanuparn, V. Pattana-anake, and F. J. J. Joseph, “Convolutional Neural Network Based Nutrient Deficiency Classification in Leaves of Elaeis guineensis Jacq,” Int. J. Comput. Inf. Syst. Ind. Manag. Appl., vol. 14, pp. 19–27, 2022.
[5] Y. Sun, Y. Liu, G. Wang, and H. Zhang, “Deep Learning for Plant Identification in Natural Environment,” Comput. Intell. Neurosci., vol. 2017, 2017, doi: 10.1155/2017/7361042.
[6] P. Hridayami, I. K. G. D. Putra, and K. S. Wibawa, “Fish species recognition using VGG16 deep convolutional neural network,” J. Comput. Sci. Eng., vol. 13, no. 3, pp. 124–130, 2019, doi: 10.5626/JCSE.2019.13.3.124.
[7] D. Albashish, R. Al-Sayyed, A. Abdullah, M. H. Ryalat, and N. Ahmad Almansour, “Deep CNN Model based on VGG16 for Breast Cancer Classification,” in 2021 International Conference on Information Technology, ICIT 2021 - Proceedings, 2021, pp. 805–810. doi: 10.1109/ICIT52682.2021.9491631.
[8] J. Pardede, B. Sitohang, S. Akbar, and M. L. Khodra, “Implementation of Transfer Learning Using VGG16 on Fruit Ripeness Detection,” Int. J. Intell. Syst. Appl., vol. 13, no. 2, pp. 52–61, 2021, doi: 10.5815/ijisa.2021.02.04.
[9] E. Bisong, “Google Colaboratory,” in Building Machine Learning and Deep Learning Models on Google Cloud Platform, E. Bisong, Ed. Berkeley, CA: Apress, 2019, pp. 59–64. doi: 10.1007/978-1-4842-4470-8_7.
[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and F.-F. Li, “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015, doi: 10.1007/s11263-015-0816-y.
[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.
[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, Jun. 2017, doi: 10.1145/3065386.
[13] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B. Vaughan, P. Damania, and S. Chintala, “PyTorch Distributed: Experiences on Accelerating Data Parallel Training,” Proc. VLDB Endow., vol. 13, no. 12, pp. 3005–3018, 2020, doi: 10.14778/3415478.3415530.
DOI: https://doi.org/10.34238/tnu-jst.6946
Refbacks
- There are currently no refbacks.





