STUDYING TECHNIQUES OF COMPUTATIONAL GEOMETRY FOR TWO-DIMENSION RANGE SEARCH ALGORITHM ASSISTING THE QUERY FOR DATABASE
About this article
Received: 15/02/23                Revised: 31/03/23                Published: 07/04/23Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] M. McKenney, R. Frye, M. Dellamano, K. Anderson, and J. Harris, “Multi-core parallelism for plane sweep algorithms as a foundation for GIS operations,” GeoInformatica, vol. 21, no. 1, pp. 151–174, 2017.
[2] H. Da, N. Alechins, M. Jackson, and Glen Hart, "A Method for Maching Caned arced and Authoritative Geospatial Data,” Transactions in GIS, vol. 21, no. 2, 2017, Art. no. 406427.
[3] A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan, “CG_Hadoop: computational Geometry in mapreduce,” in Proceedings of the international conference on advances in geographic information systems, ACM SIGSPATIAL, 2013, pp. 284–293.
[4] H. K. Chen and W. S. Chen, “GPU-accelerated blind and robust 3D mesh watermarking by geometry image,” Int. J. Multimedia Tools Appl., vol. 75, no. 16, pp. 10077–10096, 2016.
[5] K. G. Larsen and R. Williams, “Faster online matrix-vector multiplication,” in Proceedings of the 28th ACM–SIAM Symposium on Discrete Algorithms (SODA’17), SIAM, Philadelphia, 2017, pp. 2182–2189.
[6] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry, Springer, 2008.
[7] M. A. Mahmood, “A Proposed Hybrid Spatial Data Structure based on KD Tree and Quad Tree,” Jokull, vol. 69, no. 6, pp. 2-6, 2019.
[8] M. Otair, “Approximate K-Nearest Neighbour Based Spatial Clustering Using K-D Tree,” International Journal of Database Management Systems (IJDMS), vol. 5, no. 1, pp. 97-108, 2013.
[9] T. M. Chan and Z. Huang, “Dynamic Colored Orthogonal Range Searching,” Schloss Dagstuhl-Leibniz-Zentrum Informatik, vol. 204, pp. 1-13, 2021.
[10] T. M. Chan, “Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees Strike Back,” Discrete & Computational Geometry, vol. 61, pp. 899–922, 2019.
[11] J. E. Goodman, J. O'Rourke, and C. D. Tóth, Handbook of Discrete and Computational Geometry, CRC Press LLC, 2017.
[12] M. Skrodzki, The k-d tree data structure and a proof for neighborhood computation in expected logarithmic time, Cornell University, 2019, doi: 10.48550/arXiv.1903.04936.
DOI: https://doi.org/10.34238/tnu-jst.7336
Refbacks
- There are currently no refbacks.





