PURIFICATION AND EVALUATION OF THE BIOACTIVITY OF THE RECOMBINANT P54 ANTIGEN OF THE AFRICAN SWINE FEVER VIRUS EXPRESSED FROM Nicotiana benthamina
About this article
Received: 24/07/23                Revised: 30/08/23                Published: 13/09/23Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] G. Wo´zniakowski, M. Fr ˛aczyk, K. Niemczuk, and Z. Pejsak, "Selected Aspects Related to Epidemiology, Pathogenesis, Immunity, And Control of African Swine Fever," Vet. Res., vol. 60, pp. 119–125, 2016.
[2] J. Pikalo, L. Zani, J. Hühr, M. Beer, and S. Blome, "Pathogenesis of African Swine Fever in Domestic Pigs and European Wild Boar—Lessons Learned from Recent Animal Trials," Virus Res., vol. 271, 2019, Art. no. 197614.
[3] P. J. Sánchez-Cordón, M. Montoya, A. L. Reis, and L. K. Dixon, "African Swine Fever: A Re-Emerging Viral Disease Threatening the Global Pig Industry," Vet. J., vol. 233, pp. 41-48, 2018.
[4] R. E. Montgomery, "On a form of swine fever occurring in British East Africa," J Comp Pathol., vol. 34, pp. 59-191, 1921, doi: 10.1016/S0368-1742(21)80031-4.
[5] M. L. Salas and G. Andrés, "African swine fever virus morphogenesis," Virus Research, vol. 173, no. 1, pp. 29-41, 2013.
[6] F. Rodríguez, V. Ley, P. Gómez-Puertas, R. García, J. F. Rodríguez, and J. M. Escribano, "The structural protein p54 is essential for African swine fever virus viability," Virus Res., vol. 40, pp. 161-167, 1996.
[7] J. M. Rodríguez, R. García-Escudero, M. L. Salas, and G. Andrés, “African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites,” J Virol., vol. 78, no. 8, pp. 4299-4313, 2004.
[8] W. Tesfagaber, L. Wang, G. Tsegay, Y. T. Hagoss, Z. Zhang, J. Zhang, H. Huangfu, F. Xi, F. Li, E. Sun, Z. Bu, and D. Zhao, “Characterization of anti-p54 monoclonal antibodies and their potential use for African swine fever virus diagnosis,” Pathogens, vol. 10, no. 2, p. 178, 2021.
[9] N. N. Gaudreault and J. A. Richt, “Subunit vaccine approaches for African swine fever virus,” Vaccines (Basel), vol. 7, no. 2, p. 56, 2019.
[10] M. Malm, A. Diessner, K. Tamminen, M. Liebscher, T. Vesikari, and V. Blazevic, "Rotavirus VP6 as an adjuvant for bivalent norovirus vaccine produced in Nicotiana benthamiana," Pharmaceutics, vol. 11, p. 229, 2019
[11] B. J. Ward, A. Séguin, J. Couillard, S. Trépanier, and N. Landry, "Phase III: Randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18–49 years of age," Vaccine, vol. 39, pp. 1528-1533, 2021.
[12] T. T. Ho, V. T. Trinh, H. X. Tran, P. T. T. Le, T. T. Nguyen, H. T. T. Hoang, M. D. Pham, U. Conrad, N. B. Pham, and H. H. Chu, "The immunogenicity of plant-based COE-GCN4pII protein in pigs against the highly virulent porcine epidemic diarrhea virus strain from genotype 2," Frontiers in Veterinary Science, vol. 9, 2022, Art. no. 940395.
[13] N. B. Pham, T. T. Ho, G. T. Nguyen, T. T. Le, N. T. Le, and H. C. Chang, “Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein,” J Nanobiotechnol, vol. 15, 2017, Art. no. 69.DOI: https://doi.org/10.34238/tnu-jst.8404
Refbacks
- There are currently no refbacks.





