SOLATION OF BACTERIA FROM SHRIMP POND BOTTOM SLUDGE WITH THE CAPACITY TO INHIBIT Salmonella enterica subsp enterica serovar Enteritidis ATCC 49223 AND Vibrio spp. | Vân | TNU Journal of Science and Technology

SOLATION OF BACTERIA FROM SHRIMP POND BOTTOM SLUDGE WITH THE CAPACITY TO INHIBIT Salmonella enterica subsp enterica serovar Enteritidis ATCC 49223 AND Vibrio spp.

About this article

Received: 04/10/23                Revised: 07/03/24                Published: 12/03/24

Authors

1. Truong Thi Bich Van Email to author, Institute of Food and Biotechnology - Can Tho University
2. Nguyen Thi Loan Anh, Institute of Food and Biotechnology - Can Tho University

Abstract


The study isolated 49 bacteriophage strains across nine host strains by double-layer agar–drop method. Overall, all 49 bacteriophage strains are capable of infecting at least one bacterial host. Bacteriophage (ɸ) Pm5 and ɸPm12 are the two phage strains with the widest host spectrum (9/9 and 8/9 bacterial strains respectively), but the small diameter and turbid plaque indicate that the infectiousness of these two phage strains is quite low. ɸVT232 and ɸ5A were discovered to be two new bacteriophage strains that have the ability to specifically detoxify S. Enteritidis and S. Typhimurium. However, ɸ5A is still known as a bacteriophage with many host organisms including Vibrio and E.coli. Phage VT232 was discovered as an antibiotic replacement therapy in the management of due to its stability in the pH range of 5-10 and temperatures of -20ºC to 60ºC. Bacteriophage show promise as a potential agent against Salmonella-induced infections in livestock and aquaculture.

Keywords


Bacteriophage; Bacterial host; Double-layer agar; Salmonella spp.; Vibrio spp.

References


[1] S. Hinchliffe, A. Butcher, and M. M. Rahman, “The AMR problem: demanding economies, biological margins, and co-producing alternative strategies,” Palgrave Commun, vol. 4, no. 1, Art. no. 1, Nov. 2018, doi: 10.1057/s41599-018-0195-4.

[2] K. Thornber, D. Verner-Jeffreys, S. Hinchliffe, M. M. Rahman, D. Bass, and C. R. Tyler, “Evaluating antimicrobial resistance in the global shrimp industry,” Reviews in Aquaculture, vol. 12, no. 2, pp. 966-986, 2020, doi: 10.1111/raq.12367.

[3] R. C. Okocha, I. O. Olatoye, and O. B. Adedeji, “Food safety impacts of antimicrobial use and their residues in aquaculture,” Public Health Reviews, vol. 39, no. 1, p. 21, Aug. 2018, doi: 10.1186/s40985-018-0099-2.

[4] A. Patel et al., “Prevalence of antibiotic resistant Salmonella spp. strains in shrimp farm source waters of Nagapattinam region in South India,” Marine Pollution Bulletin, vol. 155, Jun. 2020, Art. no. 111171, doi: 10.1016/j.marpolbul.2020.111171.

[5] I. Frans, C. W. Michiels, P. Bossier, K. A. Willems, B. Lievens, and H. Rediers, “Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention,” Journal of Fish Diseases, vol. 34, no. 9, pp. 643-661, 2011, doi: 10.1111/j.1365-2761.2011.01279x.

[6] L. Gao et al., “Isolation and Characterization of a Lytic Vibriophage OY1 and Its Biocontrol Effects Against Vibrio spp.,” Frontiers in Microbiology, vol. 13, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmicb.2022.830692. [Accessed Sep. 16, 2023].

[7] M. D’Accolti, I. Soffritti, S. Mazzacane, and E. Caselli, “Bacteriophages as a Potential 360-Degree Pathogen Control Strategy,” Microorganisms, vol. 9, no. 2, p. 261, Jan. 2021, doi: 10.3390/microorganisms9020261.

[8] T. Abuladze, M. Li, M. Y. Menetrez, T. Dean, A. Senecal, and A. Sulakvelidze, “Bacteriophages Reduce Experimental Contamination of Hard Surfaces, Tomato, Spinach, Broccoli, and Ground Beef by Escherichia coli O157:H7,” Applied and Environmental Microbiology, vol. 74, no. 20, pp. 6230–6238, Oct. 2008, doi: 10.1128/AEM.01465-08.

[9] T. T. Tran, B. V. T Truong, and N. T. Nguyen, “Ability to resolve Escherichia coli bacteria of bacteriophages isolated from chicken farms in some Mekong Delta provinces," Journal of Livestock Science and Technology, vol. 233, pp. 83-89, 2018.

[10] N. H. Pham-Khanh et al., “Isolation, Characterisation and Complete Genome Sequence of a Tequatrovirus Phage, Escherichia phage KIT03, Which Simultaneously Infects Escherichia coli O157:H7 and Salmonella enterica,” Curr Microbiol, vol. 76, no. 10, pp. 1130-1137, Oct. 2019, doi: 10.1007/s00284-019-01738-0.

[11] N. Matamp and S. G. Bhat, “Phage Endolysins as Potential Antimicrobials against Multidrug Resistant Vibrio alginolyticus and Vibrio parahaemolyticus: Current Status of Research and Challenges Ahead,” Microorganisms, vol. 7, no. 3, Art. no. 3, Mar. 2019, doi: 10.3390/microorganisms7030084.

[12] C. Nikapitiya, H. P. S. U. Chandrarathna, S. H. S. Dananjaya, M. De Zoysa, and J. Lee, “Isolation and characterization of phage (ETP-1) specific to multidrug resistant pathogenic Edwardsiella tarda and its in vivo biocontrol efficacy in zebrafish (Danio rerio),” Biologicals, vol. 63, pp. 14-23, Jan. 2020, doi: 10.1016/j.biologicals.2019.12.006.

[13] I. Karunasagar, M. M. Shivu, S. K. Girisha, G. Krohne, and I. Karunasagar, “Biocontrol of pathogens in shrimp hatcheries using bacteriophages,” Aquaculture, vol. 268, no. 1, pp. 288-292, Aug. 2007, doi: 10.1016/j.aquaculture.2007.04.049.

[14] B. V. T. Truong, C. L. T. Nguyen, B. N. H. Le, H. K. T. Phan, and H. A. Pham, “Effective application of bacteriophages in the treatment of diseases caused by Vibrio parahaemolyticus on white leg shrimp (Litopenaeus vannamei),” Science and technology journal of agriculture and rural development, vol. 2, pp. 163-169, 2021.

[15] B. K. Chan, P. E. Turner, S. Kim, H. R. Mojibian, J. A. Elefteriades, and D. Narayan, “Phage treatment of an aortic graft infected with Pseudomonas aeruginosa,” Evolution, Medicine, and Public Health, vol. 2018, no. 1, pp. 60-66, Jan. 2018, doi: 10.1093/emph/eoy005.

[16] A. M. Kropinski, A. Mazzocco, T. E. Waddell, E. Lingohr, and R. P. Johnson, “Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay,” in Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions, M. R. J. Clokie and A. M. Kropinski, Eds., in Methods in Molecular BiologyTM., Totowa, NJ: Humana Press, 2009, pp. 69-76, doi: 10.1007/978-1-60327-164-6_7.

[17] R. Luzon-Hidalgo, V. A. Risso, A. Delgado, B. Ibarra-Molero, and J. M. Sanchez-Ruiz, “A protocol to study bacteriophage adaptation to new hosts,” STAR Protoc, vol. 2, no. 3, Aug. 2021, Art. no. 100784, doi: 10.1016/j.xpro.2021.100784.

[18] Y. Shang et al., “Isolation and Characterization of a Novel Salmonella Phage vB_SalP_TR2,” Frontiers in Microbiology, vol. 12, 2021. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmicb.2021.664810. [Accessed Jan. 31, 2023].

[19] S. Hagens and M. J. Loessner, “Bacteriophage for Biocontrol of Foodborne Pathogens: Calculations and Considerations,” Current Pharmaceutical Biotechnology, vol. 11, no. 1, pp. 58-68, Jan. 2010, doi: 10.2174/138920110790725429.

[20] B. Sui, L. Han, H. Ren, W. Liu, and C. Zhang, “A Novel Polyvalent Bacteriophage vB_EcoM_swi3 Infects Pathogenic Escherichia coli and Salmonella enteritidis,” Frontiers in Microbiology, vol. 12, 2021. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmicb.2021.649673. [Accessed Sep. 05, 2023].

[21] S.-H. Kim, D. E. Adeyemi, and M.-K. Park, “Characterization of a New and Efficient Polyvalent Phage Infecting E. coli O157:H7, Salmonella spp., and Shigella sonnei,” Microorganisms, vol. 9, no. 10, Oct. 2021, Art. no. 10, doi: 10.3390/microorganisms9102105.

[22] P. Yu, J. Mathieu, M. Li, Z. Dai, and P. J. J. Alvarez, “Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches,” Applied and Environmental Microbiology, vol. 82, no. 3, pp. 808-815, Feb. 2016, doi: 10.1128/AEM.02382-15.

[23] K. Malki et al., “Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla,” Virology Journal, vol. 12, no. 1, p. 164, Oct. 2015, doi: 10.1186/s12985-015-0395-0.

[24] N. K. El-Dougdoug et al., “Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages,” Int J Food Microbiol, vol. 293, pp. 60-71, Mar. 2019, doi: 10.1016/j.ijfoodmicro.2019.01.003.

[25] L. Jiang, R. Zheng, Q. Sun, and C. Li, “Isolation, characterization, and application of Salmonella paratyphi phage KM16 against Salmonella paratyphi biofilm,” Biofouling, vol. 37, no. 3, pp. 276-288, Mar. 2021, doi: 10.1080/08927014.2021.1900130.

[26] S. Cao et al., “Isolation and identification of the broad-spectrum high-efficiency phage vB_SalP_LDW16 and its therapeutic application in chickens,” BMC Vet Res, vol. 18, p. 386, Nov. 2022, doi: 10.1186/s12917-022-03490-3.

[27] Y. Liu et al., “Complete genomic sequence of bacteriophage P23: a novel Vibrio phage isolated from the Yellow Sea, China,” Virus Genes, vol. 55, no. 6, pp. 834-842, Dec. 2019, doi: 10.1007/s11262-019-01699-3.

[28] M. Yang et al., “Isolation and Characterization of the Novel Phages vB_VpS_BA3 and vB_VpS_CA8 for Lysing Vibrio parahaemolyticus,” Frontiers in Microbiology, vol. 11, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmicb.2020.00259. [Accessed: Nov. 29, 2022].

[29] Y. Ren et al., “Isolation and characterization of a novel phage vB_ValP_VA-RY-3 infecting Vibrio alginolyticus,” Virus Research, vol. 322, Dec. 2022, Art. no. 198945, doi: 10.1016/j.virusres.2022.198945.




DOI: https://doi.org/10.34238/tnu-jst.8897

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved