A REPORT ON THE CREATION OF THE COLLECTION OF HOST OPTIMIZED GENES ENCODING FOR FLAVIVIRUS GLOBAL CONSENSUS ENVELOPE (E) AND NON-STRUCTURAL PROTEIN 1 (NS1) | Nguyên | TNU Journal of Science and Technology

A REPORT ON THE CREATION OF THE COLLECTION OF HOST OPTIMIZED GENES ENCODING FOR FLAVIVIRUS GLOBAL CONSENSUS ENVELOPE (E) AND NON-STRUCTURAL PROTEIN 1 (NS1)

About this article

Received: 26/01/24                Revised: 14/05/24                Published: 17/05/24

Authors

1. Cu Le Nguyen, Buon Ma Thuot Medical University
2. Dang Tuan Dat, Buon Ma Thuot Medical University
3. Nguyen Ngoc Luong Email to author, Hue University - College of Sciences

Abstract


Vietnam is a critical region for infectious diseases, notably those caused by Flaviviruses, which are responsible for severe outbreaks of dengue fever, Japanese encephalitis, and Zika virus-induced microcephaly. Seroepidemiological studies in Vietnam are hindered by substantial challenges, leading to less effective public health strategies and preventative actions. A primary obstacle is the scarcity of affordable, high-quality antigens needed for extensive serological assessments. Additionally, the diversity of the virus strains in circulation complicates the development of universally applicable diagnostics and preventative tools. To overcome these issues, our study aimed to generate a suite of codon-optimized genes that encode the global consensus E glycoprotein and NS1 non-structural protein from three viruses endemic to Vietnam: Dengue, Zika, and Japanese Encephalitis viruses. This paper details the methodology for constructing the global consensus proteins E and NS1, optimizing the genes for various expression hosts, and presents initial expression outcomes in various Escherichia coli strains.

Keywords


Flavivirus; Protein E; Protein NS1; Global consensus antigens; Seroepidemiological surveys

References


[1] S. E. Straus, Fields Virology, 6th ed. Philadelphia USA: Lippincott Williams & Wilkins, vol. 1, 2013.

[2] T. T. Nguyen, A. Lundkvist, and J. Lindahl, “Urban transmission of mosquito-borne Flaviviruses – a review of the risk for humans in Vietnam,” Infection Ecology and Epidemiology, vol. 9, no. 1, 2019, Art. no. 1660129.

[3] WHO, “Dengue situation Update 665,” 2023. [Online]. Available: https://apps.who.int/iris/bitstream/handle/ 10665/365676/Dengue-20230216.pdf. [Accessed Jan. 15, 2024].

[4] M. M. N. Tun, M. Moriuchi, M. Toizumi, E. Luvai, S. Raini, N. Kitamura, M. Takegata, T. H. A. Nguyen, M. L. Moi, C. C. Buerano et al., “Congenital Zika virus infection in a birth cohort in Vietnam, 2017-2018,” The American Journal of Tropical Medicine and hygiene, vol. 103, no. 5, pp. 2059-2064, 2020.

[5] J. D. Pommier, C. Gorman, Y. Crabol, K. Bleakley, H. Sothy, K. Santy, T. T. H. Tran, L. V. Nguyen, E. Bunnakea, C. S. Hlaing et al., “Childhood encephalitis in the Greater Mekong region (the South East Asia Encephalitis Project): a multicentre prospective study,” The Lancet, Global Health, vol. 10, no. 7, pp. e989-e1002, 2022.

[6] H. E. Brindle, B. Nadjim, M. Choisy, R. Christley, M. Grifffiths, S. Baker, J. E. Bryant, J. I. Campbell, V. V. C. Nguyen, T. N. D. Nguyen et al., “Aetiology and potential animal exposure in central nervous system infection in Vietnam,” Ecohealth, vol. 19, no. 4, pp. 463-474, 2022.

[7] T. J. Chambers, C. S. Hahn, R. Galler, and C. M. Rice, “Flavivirus genome organization, expression and replication,” Annual Review Microbiology, vol. 44, pp. 649-688, 1990.

[8] D. Muller and P. R. Young, “The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker,” Antiviral Research, vol. 98, no. 2, pp. 192-208, 2013.

[9] M. Rastogi, N. Sharma, and S. K. Singh, “Flavivirus NS1: a multifacet enigmatic viral protein,” Virology Journal, vol. 13, p. 131, 2016.

[10] K. L. Carpio and A. D. T. Barrett, “Flavivirus NS1 and its potential in vaccine development,” Vaccines (Basel), vol. 9, no. 6, p. 622, 2021.

[11] J. H. Chávez, J. R. Silva, A. A. Amarilla, and L. T. M. Figueiredo, “Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization,” Biologicals, vol. 38, no. 6, pp. 613-618, 2010.

[12] L. P. Dai, J. Song, X. S. Lu, Y. Q. Deng, A. M. Musyoki, H. J. Cheng, Y. F. Zhang, Y. Yuan, H. Song, J. Haywood et al., “Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody,” Cell host and microbe, vol. 19, no. 5, pp. 696-704, 2016.

[13] R. Shukla, V. Ramasamy, R. K. Rajpoot, U. Arora, A. Podda, R. Ahuja, H. Beesetti, S. Swaminathan, and N. Khanna, “Next generation designer virus-like particle vaccines for dengue,” Expert review of vaccines, vol. 18, no. 2, pp. 105-117, 2019.

[14] E. R. A. Vos, G. den Hartog, R. M. Schepp, P. Kaaijk, J. van Vliet, K. Helm, G. Smits, A. Wijmenga-Monsuur, J. D. M. Verberk, M. van Boven et al., “Nationwide seroprevalence of SARS-CoV-2 and identification of risk factors in the general population of the Netherlands during the first epidemic wave,” Journal of Epidemiology and Community Health, vol. 75. no. 6, pp. 489-495, 2020.

[15] C. Erikstrup, A. D. Laksafoss, J. Gladov, K. A. Kaspersen, S. Mikkelsen, L. Hindhede, J. K. Boldsen, S. W. Jorgensen, S. Elthelberg, D. K. Holm et al., “Seroprevalence and infection fatality rate of the SARS-CoV-2 Omicron variant in Denmark: A nationwide serosurveillance study,” The Lancet Regional Health Europe, vol. 21, 2022, Art. no. 100479.

[16] C. Braga, C. M. T. Martelli, W. V. Souza, C. F. Luna, M. D. F. P. Albuquerque, C. A. Mariz, C. N. L. Morais, C. A. A. Brito, C. F. C. A. Melo, R. D. Lins et al., “Seroprevalence of Dengue, Chikungunya and Zika at the epicenter of the congenital microcephaly epidemic in Northeast Brazil: A population-based survey,” PloS Neglected Tropical Diseases, vol. 17, no. 7, 2023, Art. no. e0011270.

[17] L. E. Adams, M. D. T. Hitchings, F. A. Medina, D. M. Fodriguez, L. Sánche-González, H. Moore, S. S. Whitehead, J. L. Muñoz-Jordán, V. Rivera-Amill, and G. Paz-Bailey, “Previous dengue infection among children in Puerto Rico and implications for Dengue vaccine implementation,” The American journal of tropical medicine and hygiene, vol. 109, no. 2, pp. 413-419, 2023.

[18] E. A. Farag, S. Jaffrey, F. Daraan, M. H. M. A. Al-Shamali, F. Y. Khan, P. V. Coyle, F. Schaffner, H. E. Al-Romaihi, M. Al-Thani, and D. Bansal, “Dengue Epidemiology in Qatar from 2013-2021: A retrospective study,” Tropical medicine and infectious disease, vol. 7, no. 11, p. 329, 2022.

[19] Y. H. Lee, Y. C. Hsieh, C. J. Chen, T. Y. Lin, and Y. C. Huang, “Retrospective sero-epidemiology study of dengue virus infection in Taiwan,” BMC Infectious Disease, vol. 21, no. 1, p. 96, 2021.

[20] N. A. M. Azami, S. A. Salleh, H. M. Neoh, S. Z. S. Zakaria, and R. Jamal, “Dengue epidemic in Malaysia: Not a predominantly urban disease anymore,” BMC research notes, vol. 4, p. 216, 2011.

[21] M. L. Ha, T. P. Huynh, H. T. V. Nguyen, T. L. T. Nguyen, N. D. Pham, T. N. M. Thai, V. V. C. Nguyen, I. Rodríguez-Barraquer, D. A. T. Cummings, B. A. Wills et al., “Serological inference of past primary and secondary dengue infection: implications for vaccination,” Journal of royal society, interface, vol. 16, no. 156, 2019, Art. no. 20190207.

[22] N. H. Tran, D. Chansinghakul, C. Y. Chong, C. Y. Low, L. P. Shek, C. Q. Luong, C. Fargo, T. A. Wartel, S. Sun, A. Skipetrova, and A. Bouckenoooghe, “Long-term immunogenicity and safety of tetravalent dengue vaccine (CYD-TVD) in healthy populations in Singapore and Vietnam: 4-year follow-up of randomized, controlled, phase II trials,” Human vaccines and immunotherapeutics, vol. 15, no. 10, pp. 2315-2327, 2019.

[23] H. C. Turner, B. A. Wills, M. Rhaman, Q. C. Hoang, G. E. Thwaites, M. F. Boni, and H. E. Clapham, “Projected costs associated with school-based screening to informa deployment of Dengvaxia: Vietnam as a case study,” Transactions of the royal society of tropical medicine and hygiene, vol. 112, no. 8, pp. 369-377, 2018.

[24] C. Park, W. B. Kim, S. Y. Cho, E. J. Oh, H. Lee, K. Kang, Y. Lee, and D. G. Lee, “A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach,” Biomed research international, 2020, Art. no. 3865707.

[25] M. Hussain, M. Idrees, and S. Afzal, “Development of global consensus of dengue virus envelope glycoprotein for epitopes based vaccine design,” Current computer aided drug design, vol. 11, pp. 84-97, 2015.

[26] A. C. Antonelli, V. P. Almeida, and S. G. de Fonseca, “Immunoinformatics vaccine design for Zika virus,” Methods in molecular biology, vol. 2673, pp. 411-429, 2023.

[27] G. R. Webster, A. Y. The, and J. K. Ma, “Synthetic gene design-The rationale for codon optimization and implications for molecular pharming in plants,” Biotechnology and bioengineering, vol. 114, no. 3, pp. 492-502, 2017.

[28] B. K. S. Chung and D. Y. Lee, “Computational codon optimization of synthetic gene for protein expression,” MBC systems biology, vol. 20, no. 6, p. 134, 2012.

[29] K. Tamura, G. Stecher, and S. Kumar, “MEGA11: Molecular Evolutionary Genetics Analysis version 11,” Molecular biology and evolution, vol. 38, no. 7, pp. 3022-3027, 2021.

[30] A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, and G. J. Barton, “Jaview version 2 – a multiple sequence alignment editor and analysis workbench,” Bioinformatics, vol. 25, pp. 1189-1191, 2009.

[31] S. K. Jung and K McDonald, “Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization,” BMC Bioinformatics vol. 12, p. 340, 2011.

[32] T. N. T. Nguyen, T. T. H. Huynh, P. T. Nguyen, T. A. T. Duong, T. T Cao, T. H. T. Le, H. T. Nguyen, H. L. Nguyen, and N. L. Nguyen, “Expression of a synthetic gene encoding the enhanced green fluorescente protein in various Escherichia coli strains,” Vietnam Journal of Biotechnology, vol. 20, no. 2, pp. 359-368, 2022.

[33] G. L. Rosano and E. A. Ceccarelli, “Recombinant protein expression in Escherichia coli: advances and challenges,” Frontiers in microbiology, vol. 17, no. 5, p. 172, 2014.

[34] D. Allonso, M. da Silva Rosa, D. R. Coelho, S. M. da Costa, R. M. Nogueira, F. A. Bozza, F. B. Santos, A. M. de Barcelos Alves, and R. Mohana-Borges, “Polyclonal antibodies against properly folded Dengue virus NS1 protein expressed in E. coli enable sensitive and early dengue diagnosis,” Journal of virology methods, vol. 175, pp. 109-116, 2011.




DOI: https://doi.org/10.34238/tnu-jst.9643

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved