MỘT PHƯƠNG PHÁP TỰ CHƯNG CẤT KIẾN THỨC HIỆU QUẢ ĐỂ PHÂN LOẠI CHẤT THẢI
Thông tin bài báo
Ngày nhận bài: 02/04/24                Ngày hoàn thiện: 23/05/24                Ngày đăng: 24/05/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] K. N. Sami, Z. M. A. Amin, and R. Hassan, "Waste management using machine learning and deep learning algorithms," International Journal on Perceptive and Cognitive Computing, vol. 6, no. 29, pp. 7-106, 2020.
[2] S. Shahab, M. Anjum, and M. S. Umar, "Deep learning applications in solid waste management: A deep literature review," International Journal of Advanced Computer Science and Applications, vol. 13, no. 3, pp. 1-15, 2022.
[3] M. Triassi, R. Alfano, M. Illario, A. Nardone, O. Caporale, and P. Montuori, "Environmental pollution from illegal waste disposal and health effects: A review on the “Triangle of Death”," International Journal of Environmental research and public health, vol. 12, no. 2, pp. 1216-1236, 2015.
[4] Q. H. Nguyen, “Domestic waste in Vietnam: Current situation and solutions,” National Assembly of the Socialist Republic of Vietnam, 2023. [Online]. Available: https://quochoi.vn/tintuc/Pages/tin-hoat-dong-cua-quoc-hoi.aspx?ItemID=82916. [Accessed Feb. 20, 2024].
[5] A. A. Namen, F. D. C. Brasil, J. J. G. Abrunhosa, G. G. S. Abrunhosa, R. M. Tarré, and F. J. G. Marques, "RFID technology for hazardous waste management and tracking," Waste management & research, vol. 32, no. 9, pp. 59-66, 2014.
[6] H. Abdu and M. H. M. Noor, "Domestic trash classification with transfer learning using VGG16," In 12th International Conference on Control System, Computing and Engineering (ICCSCE), IEEE, 2022, pp. 137-141.
[7] N. Islam, M. M. H. Jony, E. Hasan, S. Sutradhar, A. Rahman, and M. M. Islam, "Ewastenet: A two-stream data efficient image transformer approach for e-waste classification," In 2023 IEEE 8th International Conference on Software Engineering and Computer Systems (ICSECS), IEEE, 2023, pp. 435-440.
[8] K. Belsare, M. Singh, A. Gandam, P. K. Malik, R. Agarwal, and A. Gehlot, "An integrated approach of IoT and WSN using wavelet transform and machine learning for the solid waste image classification in smart cities," Transactions on Emerging Telecommunications Technologies, vol. 35, no. 4, 2023, Art. no. e4857.
[9] T. Mythili and A. Anbarasi, "A concatenation of deep and texture features for medicinal trash image classification using EnSegNet-DNN-based transfer learning," Materials Today: Proceedings, vol. 62, pp. 4691-4698, 2022.
[10] M. S. Nafiz, S. S. Das, M. K. Morol, A. A. Juabir, and D. Nandi, "Convowaste: An automatic waste segregation machine using deep learning," In 3rd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE, 2023, pp. 181-186.
[11] G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a neural network," In International Conference on Neural Information Processing Systems, 2015, pp. 1-9.
[12] D.-Q. Vu, N. Le, and J.-C. Wang, "Teaching yourself: A self-knowledge distillation approach to action recognition," IEEE Access, vol. 9, pp. 105711-105723, 2021.
[13] S. Yun, J. Park, K. Lee, and J. Shin, "Regularizing class-wise predictions via self-knowledge distillation," In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 13876-13885.
[14] D.-Q. Vu and J.-C. Wang, "A novel self-knowledge distillation approach with siamese representation learning for action recognition," In 2021 International Conference on Visual Communications and Image Processing (VCIP), IEEE, 2021, pp. 1-5.
[15] H. M. Tan, D.-Q. Vu, C.-T. Lee, Y.-H. Li, and J.-C. Wang, "Selective mutual learning: an efficient approach for single channel speech separation," In International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2022, pp. 3678-3682.
[16] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, "Randaugment: Practical automated data augmentation with a reduced search space," In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2020, pp. 702-703.
[17] G. Thung and M. Yang, "Dataset of images of trash; Torch-based CNN for garbage image classification," Github. [Online]. Available: https://github. com/garythung/trashnet. [Accessed Jan. 30, 2024].
[18] K. Liu and X. Liu, "Recycling Material Classification using Convolutional Neural Networks," In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, 2022, pp. 83-88.
DOI: https://doi.org/10.34238/tnu-jst.10013
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu