NGHIÊN CỨU TỔNG HỢP VÀ ĐÁNH GIÁ HOẠT TÍNH SINH HỌC CỦA POLYSACCHARIDE NGOẠI BÀO TỪ VI KHUẨN LEVILACTOBACILLUS BREVIS MT8 | Huy | TNU Journal of Science and Technology

NGHIÊN CỨU TỔNG HỢP VÀ ĐÁNH GIÁ HOẠT TÍNH SINH HỌC CỦA POLYSACCHARIDE NGOẠI BÀO TỪ VI KHUẨN LEVILACTOBACILLUS BREVIS MT8

Thông tin bài báo

Ngày nhận bài: 13/05/24                Ngày hoàn thiện: 10/06/24                Ngày đăng: 13/06/24

Các tác giả

1. Nguyễn Quang Huy, Trường Đại học Khoa học và Công nghệ Hà Nội – VAST
2. Quách Ngọc Tùng, Viện Công nghệ sinh học – VAST
3. Vũ Thị Hạnh Nguyên, Viện Công nghệ sinh học – VAST
4. Nguyễn Hữu Quân, Trường Đại học Sư phạm - ĐH Thái Nguyên
5. Phí Quyết Tiến Email to author, Viện Công nghệ sinh học – VAST

Tóm tắt


Các polysacaride ngoại bào từ vi khuẩn lactic hiện thu hút được sự quan tâm lớn cho các ứng dụng trong lĩnh vực thực phẩm, dược phẩm và công nghệ sinh học do hoạt tính sinh học và đặc tính lưu biến của chủng. Tại Việt Nam, chỉ có vài công trình nghiên cứu quá trình tổng hợp và hoạt tính sinh học của EPS từ vi khuẩn lactic. Nghiên cứu này tập trung nâng cao hiệu quả sinh tổng hợp EPS bởi vi khuẩn Levilactobacillus brevis MT8, ngoài ra còn đánh giá hoạt tính chống oxy hóa và kháng khuẩn của EPS thu nhận. Chủng MT8 với hình thái khuẩn lạc nhầy, phân lập từ cà lên men, được định danh là L. brevis bằng phân tích trình tự gen 16S rRNA. Sau khi tối ưu hóa, chủng MT8 tổng hợp EPS cao nhất là 725,7±50,1 mg/L khi nuôi cấy trên môi trường MRS cải biến chứa 40 g/L sucrose trong 48 giờ ở 37°C. Thử nghiệm đánh giá hoạt tính chống oxy hóa cho thấy EPS thu được thể hiện hoạt tính ức chế 1,1-diphemy 1-2-picryl-hydrazyl (78,0±0,4%) và hydroxyl (68,8±0,5%) cao nhất ở nồng độ 2 mg/mL. Đáng chú ý, EPS ở nồng độ 5 mg/mL thể hiện hoạt tính kháng vi khuẩn Escherichia coli ATCC 11105 và Salmonella typhimurium ATCC 14028 với vòng ức chế lần lượt là 5,9±0,4 mm và 7,5±0,2 mm. Do đó, EPS từ vi khuẩn L. brevis MT8 có tiềm năng ứng dụng trong các ngành công nghiệp thực phẩm, mỹ phẩm, y sinh. Đây là báo cáo đầu tiên chứng minh tính kháng khuẩn của EPS tổng hợp bởi vi khuẩn L. brevis.

Từ khóa


Chống oxy hoá; Hoạt tính kháng khuẩn; Levilactobacillus brevis; Polysaccharide ngoại bào; Vi khuẩn lactic

Toàn văn:

PDF (English)

Tài liệu tham khảo


[1] T. Goa, G. Beyene, M. Mekonnen, and K. Gorems, "Isolation and characterization of lactic acid bacteria from fermented milk produced in Jimma Town, Southwest Ethiopia, and evaluation of their antimicrobial activity against selected reference bacteria," International journal of food science, vol. 2022, 2022, Art. no. 2076021, doi: 10.1155/2022/2076021.

[2] Y. Wei, F. Li, L. Li, L. Huang, and Q. Li, "Genetic and biochemical characterization of an exopolysaccharide with in vitro antitumoral activity produced by Lactobacillus fermentum YL-11," Front Microbiol, Original Research vol. 10, 2019, doi: 10.3389/fmicb.2019.02898.

[3] A. K. Abdalla et al., "Exopolysaccharides as antimicrobial agents: mechanism and spectrum of activity," Front Microbiol, vol. 12, 2021, Art. no. 664395, doi: 10.3389/fmicb.2021.664395.

[4] B. Adebayo-Tayo and R. Fashogbon, "In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. bulgaricus," Heliyon, vol. 6, no. 2, Feb. 2020, Art. no. e03268, doi: 10.1016/j.heliyon.2020.e03268.

[5] M. S. Riaz Rajoka, Y. Wu, H. M. Mehwish, M. Bansal, and L. Zhao, "Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health," Trends Food Sci Technol, vol. 103, pp. 36-48, 2020, doi: 10.1016/j.tifs.2020.06.003.

[6] A. Afreen, Z. Ahmed, and N. Khalid, "Optimization, fractional characterization, and antioxidant potential of exopolysaccharides from Levilactobacillus brevis NCCP 963 isolated from “kanji”," RSC Advances, 10.1039/D2RA07338B vol. 13, no. 29, pp. 19725-19737, 2023, doi: 10.1039/D2RA07338B.

[7] Q. N. Tung, T. Busche, V. V. Loi, J. Kalinowski, and H. Antelmann, "The redox-sensing MarR-type repressor HypS controls hypochlorite and antimicrobial resistance in Mycobacterium smegmatis," Free Radic Biol Med, vol. 147, pp. 252-261, 2020, doi: 10.1016/j.freeradbiomed.2019.12.032.

[8] J. Liu, X. Han, T. Zhang, K. Tian, Z. Li, and F. Luo, "Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy," J Hematol Oncol, vol. 16, no. 1, p. 116, 2023, doi: 10.1186/s13045-023-01512-7.

[9] L. Xiao et al., "Biosynthesis of exopolysaccharide and structural characterization by Lacticaseibacillus paracasei ZY-1 isolated from Tibetan kefir," Food chemistry. Molecular sciences, vol. 3, 2021, Art. no. 100054, doi: 10.1016/j.fochms.2021.100054.

[10] M. Feyereisen et al., "Comparative genome analysis of the Lactobacillus brevis species," BMC Genomics, vol. 20, no. 1, p. 416, 2019, doi: 10.1186/s12864-019-5783-1.

[11] N. T. Quach et al., "Structural and genetic insights into a poly-γ-glutamic acid with in vitro antioxidant activity of Bacillus velezensis VCN56," World journal of microbiology & biotechnology, vol. 38, no. 10, p. 173, 2022, doi: 10.1007/s11274-022-03364-8.

[12] T. H. N. Vu et al., "Fusarium foetens AQF6 isolated from Amentotaxus ynnanensis H.L.Li as a prolific source of antioxidant compounds," Appl Sci, vol. 14, no. 5, p. 2048, 2024.

[13] T. H. N. Vu et al., "Distribution, cytotoxicity, and antioxidant activity of fungal endophytes isolated from Tsuga chinensis (Franch.) Pritz. in Ha Giang province, Vietnam," Ann Microbiol, vol. 72, no. 1, p. 36, 2022, doi: 10.1186/s13213-022-01693-5.

[14] N. T. Quach et al., "Genome-guided investigation provides new insights into secondary metabolites of Streptomyces parvulus SX6 from Aegiceras corniculatum," (in eng), Polish journal of microbiology, vol. 71, no. 3, pp. 381-394, 2022, doi: 10.33073/pjm-2022-034.

[15] R. Du, L. Yu, N. Yu, W. Ping, G. Song, and J. Ge, "Characterization of exopolysaccharide produced by Levilactobacillus brevis HDE-9 and evaluation of its potential use in dairy products," Int J Biol Macromol, vol. 217, pp. 303-311, 2022, doi: 10.1016/j.ijbiomac.2022.07.057.

[16] X. Wang, S. Wang, J. Xu, B. Wu, Z. Hu, and H. Niu, "Isolation, characterization, and biopreservation of Lactobacillus brevis DN-1 to inhibit mold and remove aflatoxin B1 in peanut and sunflower cakes," Agriculture, vol. 14, no. 5, p. 698, 2024.

[17] M. Y. Imran et al., "Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20," Int J Biol Macromol, vol. 93, no. Pt A, pp. 731-745, Dec 2016, doi: 10.1016/j.ijbiomac.2016.09.007.

[18] N. R. Lee et al., "Improved production of poly-γ-glutamic acid by Bacillus subtilis D7 isolated from Doenjang, a Korean traditional fermented food, and its antioxidant activity," (in eng), Applied biochemistry and biotechnology, vol. 173, no. 4, pp. 918-32, Jun 2014, doi: 10.1007/s12010-014-0908-0.

[19] M. S. Riaz Rajoka et al., "Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk," LWT, vol. 89, pp. 638-647, 2018, doi: 10.1016/j.lwt.2017.11.034.

[20] A. K. Abdalla et al., “Exopolysaccharides as Antimicrobial Agents: Mechanism and Spectrum of Activity,” Front Microbiol, vol. 12, 2021, Art. no. 664395, doi: 10.3389/fmicb.2021.664395.

[21] M. L. Werning et al., “Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals,” Foods, vol. 11, no. 9, 2022, Art. no. 1284, doi: 10.3390/foods11091284.




DOI: https://doi.org/10.34238/tnu-jst.10375

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved