CÁC TÍNH CHẤT VẬT LÝ ĐẶC TRƯNG CỦA CÁC BĂNG NANO GERMANENE MỘT CHIỀU ĐƯỢC PHA TẠP B: MỘT NGHIÊN CỨU DFT
Thông tin bài báo
Ngày nhận bài: 01/08/22                Ngày hoàn thiện: 16/09/22                Ngày đăng: 16/09/22Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] K. S. Novoselov and A. K. Geim, “The rise of grapheme,” Nat. Mater, vol. 6, no. 3, pp. 183-191, 2007.
[2] V. B. Mohan, D. Liu, K. Jayaraman, M. Stamm, and D. Bhattacharyya, “Improvements in electronic structure and properties of graphenederivatives,” Adv. Mater. Lett., vol. 7, no. 6, pp. 421-429, 2016.
[3] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The Electronic Properties of Graphene,” Rev. Mod.Phys., vol. 81, no. 109, pp. 1-48, 2009.
[4] A. K. Geim, “Graphene: Status and Prospects,” Science, vol. 324, no. 5934, pp. 1530-1534, 2009.
[5] M. Antonio and G. Miano, “Electrical properties of graphene for interconnect applications,” Applied Sciences, vol. 4, no. 2, pp. 305-317, 2014.
[6] P. Bazylewski and G. Fanchini, “Graphene: Properties and Applications,” Engineering Comprehensive Nanoscience and Nanotechnology, vol. 1, no. 3, pp. 287-304, 2019.
[7] N. J. Roome and J. D. Carey, “Beyond graphene: stable elemental monolayers of silicene and germanene,” ACS Appl. Mater Interfaces, vol. 6, no. 10, pp. 7743-7750, 2014.
[8] K. Takeda and K. Shiraishi, “Theoretical possibility of stage corrugation in Si and Ge analogs of graphite,” Physical Review B., vol. 50, no. 20, pp. 14916–14922, 1994.
[9] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, “Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium,” Physical Review Letters., vol. 102, 2009, Art. no. 236804.
[10] Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu, "Tunable bandgap in silicene and germanene," Nano letters, vol. 12, no. 1, pp. 113-118, 2011.
[11] B. V. D. Broek, M. Houssa, E. Scalise, G. Pourtois, V. Afanas‘ev, and A. Stesmans, "First-principles electronic functionalization of silicene and germanene by adatom chemisorption," Applied Surface Science, vol. 291, no. 30, pp. 104-108, 2014.
[12] M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. L. Lay, “Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicone,” New J. Phys., vol. 16, 2014, Art. no. 095002.
[13] L. Li, S. z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du, and H. J. Gao, “Buckled germanene formation on Pt (111),” Advanced Materials, vol. 26, no. 28, pp. 4820-4824, 2014.
[14] M. Derivaz, D. Dentel, R. Stephan, M. C. Hanf, A. Mehdaoui, P. Sonnet, and C. Pirri, “Continuous germanene layer on Al (111),” Nano letters, vol. 15, no. 4, pp. 2510-2516, 2015.
[15] H. Oughaddou, S. Sawaya, J. Goniakowski, B. Aufray, G. L. Lay, J. Gay, G. Tréglia, J. Bibérian, N. Barrett, and C. Guillot, "Ge/Ag (111) semiconductor-on-metal growth: Formation of an Ag 2 Ge surface alloy," Physical Review B, vol. 62, 2000, Art. no. 16653.
[16] A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, A. V. Houselt, A. N. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, and M. I. Katsnelson, “Germanene: the germanium analogue of grapheme,” J. Phys.: Condens. Matter, vol. 27, 2015, Art. no. 443002.
[17] M. Houssa, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, “Electronic properties of two-dimensional hexagonal germanium,” Appl. Phys. Lett., vol. 96, 2010, Art. no. 082111.
[18] N. J. Roome and J. D. Carey, “Beyond Graphene: Stable Elemental Monolayers of Silicene and Germanene,” ACS Appl. Mater. Interfaces, vol. 6, no. 10, pp. 7743–7750, 2014.
[19] A. Nijamudheen, R. Bhattacharjee, S. Choudhury, and A. Datta, “Electronic and Chemical Properties of Germanene: The Crucial Role of Buckling,” J. Phys. Chem. C, vol. 119, no.7, pp. 3802–3809, 2015.
[20] S. Trivedi, A. Srivastava, and R. Kurchania, “Silicene and Germanene: A First Principle Study of Electronic Structure and Effect of Hydrogenation-Passivation,” Journal of Computational and Theoretical Nanoscience, vol. 11, no. 3, pp. 781-788, 2014.
[21] Y. Cai, C.-P. Chuu, C. M. Wei, and M. Y. Chou, “Stability and electronic properties of two-dimensional silicene and germanene on grapheme,” Phys. Rev. B, vol. 88, 2013, Art. no. 245408.
[22] M. Ye, R. Quhe, J. Zheng, Z. Ni, Y. Wang, Y. Yuan, G. Tse, J. Shi, Z. Xiang, and G. J. Lu, “Tunable band gap in germanene by surface adsorption,” Physica. E: Low-dimensional Systems and Nanostructures, vol. 59, pp. 60-65, 2014.
[23] X. Li, S. Wu, S. Zhou, and Z. Zhu, “Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices,” Nanoscale Res. Lett., vol. 9, 2014, Art. no. 110.
[24] M. M. Monshi, S. M. Aghaei, and I. Calizo, “Edge functionalized germanene nanoribbons: impact on electronic and magnetic properties,” RSC Advances, vol. 7, no. 31, pp. 18900-18908, 2017.
[25] Q. Pang, Y. Zhang, J.-M. Zhang, V. Jib, and K.-W. Xuc, “Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons,” Nanoscale, vol. 3, no. 10, pp. 4330-4338, 2011.
[26] W. Xia, W. Hu, Z. Li, and J. Yang, “A first-principles study of gas adsorption on germanene,” Physical Chemistry Chemical Physics, vol. 16, no. 41, pp. 22495-22498, 2014.
[27] A. Samipour, D. Dideban, and H. Heidari, “Impact of substitutional metallic dopants on the physical and electronic properties of germanene nanoribbons: A first principles study,” Results in Physics, vol. 18, 2020, Art. no. 103333.
DOI: https://doi.org/10.34238/tnu-jst.6313
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu