TÍNH TOÁN VÀ PHÂN TÍCH CÁC HỆ SỐ CHUYỂN ĐỘNG ELECTRON TRONG HỖN HỢP KHÍ TRIES-N2
Thông tin bài báo
Ngày nhận bài: 07/11/22                Ngày hoàn thiện: 30/11/22                Ngày đăng: 30/11/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] K. Yoshida, R. Sato, T. Yokota, Y. Kishimoto, and H. Date, "Electron Transport Properties in HSi (OC2H5) 3 Vapor," Japanese Journal of Applied Physics, vol. 50, no. 12R, 2011, Art. no. 120210.
[2] M. Abbasi-Firouzjah, "The effect of TEOS plasma parameters on the silicon dioxide deposition mechanisms," Journal of Non-Crystalline Solids, vol. 368, pp. 86-92, 2013.
[3] Y. Shin, Y. Akiyama, N. Imaishi, and S. Jung, "Silicon Dioxide Film Deposition by Afterglow-Plasma-Enhanced Chemical Vapor Deposition using Triethoxysilane and Tetraethoxysilane," Engineering Sciences Reports, Kyushu university, vol. 25, no. 1, pp. 1-6, 2003.
[4] Y. Kudoh, Y. Homma, N. Sakuma, T. Furusawa, and K. Kusukawa, "Directional plasma CVD technology for sub-quarter-micron feature size multilevel interconnections," Japanese Journal of Applied Physics, vol. 37, no. 3S, 1998, Art. no. 1145.
[5] H. J. Lee, "Plasma Diagnostics during Plasma-Enhanced Chemical-Vapor Deposition of Low-Dielectric-Constant SiOC (-H) Films from TES/O2 Precursors," Journal of the Korean Physical Society, vol. 53, no. 3, 2008, doi: 10.3938/jkps.53.1468.
[6] M. J. Krečmarová, V. Petrák, A. Taylor, K. J. Sankaran, I. N. Lin, A. Jäger, V. Gärtnerová, L. Fekete, J. Drahokoupil, F. Laufek, and J. Vacík, "Change of diamond film structure and morphology with N2 addition in MW PECVD apparatus with linear antenna delivery system,” Physica Status Solidi, vol. 211, no. 10, pp. 2296-2301, 2014.
[7] H. C. Knoops, E. M. Braeken, K. de Peuter, S. E. Potts, S. Haukka, V. Pore, and W. M. Kessels, "Atomic layer deposition of silicon nitride from Bis(tert-butylamino) silane and N2 plasma," ACS Applied Materials & Interfaces, vol. 8, no. 35, pp. 19857–19862, 2015.
[8] Z. Zang, A. Nakamura, and J. Temmyo, "Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature," Materials Letters, vol. 42, no. 1, pp. 188-191, 2013.
[9] A. T. Do and B. H. Jeon, "Electron collision cross sections for the tetraethoxysilane molecule and electron transport coefficients in tetraethoxysilane-O2 and tetraethoxysilane-Ar mixtures," Journal of the Physical Society of Japan, vol. 81, no. 6, pp. 064301- 064301-8, 2012.
[10] A. T. Do, "Calculations of electron transport coefficients in Cl2-Ar, Cl2-Xe and Cl2 –O2 mixtures," Journal of the Korean Physical Society, vol. 64, no.1, pp. 23-29, 2014.
[11] X. H. Pham, T. T. Phan, C. N. Tang, and A. T. Do, "Studying effect of adding buffer gases to TRIES gas on the electron transport coefficients," ICERA 2019, LNNS, K.-U. Sattler et al. (Eds.), Springer Nature Switzerland, vol. 104, pp. 693–703, 2020.
[12] X. H. Pham, T. T. Phan, and A. T. Do, "Electron Collision Cross Sections for the TRIES Molecule and Electron Transport Coefficients in TRIES-Ar and TRIES-O2 Mixtures," Journal of the Korean Physical Society, vol. 73, no. 12, pp. 1855-1862, Dec. 2018.
[13] A. T. Do "Analysis of insulating characteristics of Cl2-He mixture gases in gas discharge," Journal of Electrical Engineering & Technology, vol. 10, no. 4, pp. 1735-1738, 2015.
[14] H. Tagashira, Y. Sakai, and S. Sakamoto, "The development of electron avalanches in argon at high E/N values. II. Boltzmann equation analysis," J. Phys. D., vol. 10, pp. 1051-1063, 1977.
[15] Y. Nakamura, Private Communication, Tokyo Denki Univ., Tokyo, Japan, Nov. 2010.
DOI: https://doi.org/10.34238/tnu-jst.6889
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu