ẢNH HƯỞNG CỦA KÍCH THƯỚC HẠT LÊN TÍNH CHẤT TỪ VÀ QUANG CỦA HỆ HẠT NANO Fe3O4
Thông tin bài báo
Ngày nhận bài: 24/12/22                Ngày hoàn thiện: 08/02/23                Ngày đăng: 08/02/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] K. K. Kefeni, T. A. M. Msagati, T. T. Nkambule, and B. B. Mamba, “Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity,” Mater. Sci. Eng. C, vol. 107, 2020, Art. no. 110314(19).
[2] K. K. Kefeni and B. B. Mamba, “Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment,” SM&T, vol. 23, 2020, Art. no. E00140(18).
[3] K. Kalantari, M. B. Ahmad, H. R. F. Masoumi, K. Shameli, M. Basri, and R. Khandanlou, “Rapid Adsorption of Heavy Metals by Fe3O4/Talc Nanocomposite and Optimization Study Using Response Surface Methodology,” Int. J. Mol. Sci., vol. 15, pp. 12913-12927, 2014.
[4] A. E. Deatsch and B. A. Evans, “Heating efficiency in magnetic nanoparticle hyperthermia,” J. Magn. Magn. Mater., vol. 354, pp. 163-172, 2014.
[5] F. Chen, N. Ilyas, X. Liu, Z. Li, S. Yan, and H. Fu, “Size Effect of Fe3O4 Nanoparticles on Magnetism and Dispersion Stability of Magnetic Nanofluid,” Front. Energy Res., vol. 9, 2021, Art. 780008.
[6] L. H. Nguyen, V. T. K. Oanh, P. H. Nam, D. H. Doan, N. X. Truong, N. X. Ca, P. T. Phong, L. V. Hong, and T. D. Lam, “Increase of magnetic hyperthermia efficiency due to optimal size of particles: theoretical and experimental results,” J. Nanopart. Res., vol. 22, 2020, Art. no. 258(16).
[7] C. Bai, P. Hu, N. Liu, G. Feng, D. Liu, Y. Chen, M. Ma, N. Gu, and Y. Zhang, “Synthesis of Ultrasmall Fe3O4 Nanoparticles as T1–T2 Dual-Modal Magnetic Resonance Imaging Contrast Agents in Rabbit Hepatic Tumors,” ACS Appl. Nano Mater., vol. 3, pp. 3585-3595, 2020.
[8] Y. Li, W. Duan, X. Lu, S. Yang, and X. Wen, “Synthesis of strawberry-like Fe3O4@SiO2@Ag composite colloidal particles for constructing responsive photonic crystals,” Opt., vol. 94, pp. 423-429, 2019.
[9] I. M. Obaidat, B. Issa, and Y. Haik, “Magnetic properties of magnetic nanoparticles for efficient hyperthermia,” Nanomaterials, vol. 5, pp. 63-89, 2015.
[10] Y.-w. Jun, Y.-M. Huh, J.-s. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Yoon, K.-S. Kim, J.-S. Shin, and J.-S. Suh, “Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging,” J. Am. Chem. Soc., vol. 127, pp. 5732-5733, 2005.
[11] F. Ozel, H. Kockar, and O. Karaagac, “Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size,” J. Supercond. Nov. Magn., vol. 28, pp. 823-829, 2015.
[12] Y. Dong, B. Wen, Y. Chen, P. Cao, and C. Zhang, “Autoclave-free facile approach to the synthesis of highly tunable nanocrystal clusters for magnetic responsive photonic crystals,” RSC Adv., vol. 6, pp. 64434-64440, 2016.
[13] A. H. Habib, C. L. Ondeck, P. Chaudhary, M. R. Bockstaller, and M. E. McHenry, “Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy,” J. Appl. Phys., vol. 103, pp. 07A307-1-07A307-3, 2008.
[14] M. E. Sadat, M. K. Baghbador, A. W. Dunn, H. P. Wagner, R. C. Ewing, J. Zhang, H. Xu, G. M. Pauletti, D. B. Mast, and D. Shi, “Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy,” Appl. Phys. Lett., vol. 105, 2014, Art. no. 091903.
[15] A. Radoń, A. Drygała, Ł. Hawełek, and D. Łukowiec, “Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers,” Mater. Charact., vol. 131, pp. 148-156, 2017.
[16] L. T. Dat, L. H. Nguyen, N. H. Nam, T. D. Van, N. X. Truong, V.-Q. Nguyen, P. T. Phong, and P. H. Nam, “Dependence of specific absorption rate on concentration of Fe3O4 nanoparticles: from the prediction of Monte Carlo simulations to experimental results,” J. Nanopart. Res., vol. 24, pp. 1-13, 2022.
[17] Z. J. Zhang, X. Y. Chen, B. N. Wang, and C. W. Shi, “Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties,” J. Cryst. Growth., vol. 310, pp. 5453-5457, 2008.
[18] J. Liang, L. Li, M. Luo, J. Fang, and Y. Hu, “Synthesis and properties of magnetite Fe3O4 via a simple hydrothermal route,” Solid State Sci., vol. 12, pp. 1422-1425, 2010.
[19] R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field,” J. Magn. Magn. Mater. vol. 252, pp. 370-374, 2002.
[20] G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys., vol. 94, pp. 3520-3528, 2003.
[21] R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, “Finite size effects in antiferromagnetic NiO nanoparticles,” Phys. Rev. Lett., vol. 79, 1997, Art. no. 1393.
[22] R. Yanes, O. Chubykalo-Fesenko, H. Kachkachi, D. A. Garanin, R. Evans, and R. W. Chantrell, “Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy,” Phys. Rev. B, vol. 76, 2007, Art. no. 064416(6).
[23] J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B, vol. 15, pp. 627-637, 1966.
DOI: https://doi.org/10.34238/tnu-jst.7162
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu