MẠCH CDR DẢI RỘNG TRÊN CÔNG NGHỆ CMOS 28 nm VỚI THỜI GIAN BÁM TẦN SỐ CỰC ĐẠI 0,9 μs
Thông tin bài báo
Ngày nhận bài: 18/02/25                Ngày hoàn thiện: 28/03/24                Ngày đăng: 04/04/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] A. Amirkhany, "Basics of Clock and Data Recovery Circuits: Exploring High-Speed Serial Links," IEEE Solid-State Circuits Magazine, vol. 12, no. 01, pp. 25-38, Jan. 2020.
[2] L. Rodoni, A. Huber, et al., "A 5.75 to 44 Gb/s Quarter Rate CDR With Data Rate Selection in 90 nm Bulk CMOS," IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1927-1941, Jul. 2009.
[3] J. C. Seo, J. Y. Jang, et al., "A 1.62/2.7/5.4 Gbps Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO," IEEE J. Semiconductor Technology and Science, vol. 13, no. 3, pp. 185-192, Jun. 2013.
[4] W. Rahman et al., "A 22.5-to-32-Gb/s 3.2-pJ/b Referenceless Baud-Rate Digital CDR With DFE and CTLE in 28-nm CMOS," IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3517-3531, Dec. 2017.
[5] Y. Jung et al., “A 16-30Gb/s 1.03pJ/b Referenceless Baud-Rate CDR with Integrated Pattern Decoding Technique for Fast Frequency Acquisition,” in IEEE Asian Solid-State Circuits Conference (A-SSCC), Japan, November 18-21, 2024.
[6] C. Yu, E. Sa, S. Jin, H. Park, J. Shin, and J. Burm, "A 6.5-12.5-Gb/s Half-Rate Single-Loop All-Digital Referenceless CDR in 28-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 55, no. 10, pp. 2831-2841, Oct. 2020.
[7] K. Park et al., "A 4–20-Gb/s 1.87-pJ/b Continuous-Rate Digital CDR Circuit With Unlimited Frequency Acquisition Capability in 65-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 56, no. 5, pp. 1597-1607, May 2021.
[8] M. Al-Shyoukh, H. Lee, and R. Perez, “1.4-8 Gb/s Low Power Quarter-rate Single-Loop Referenceless CDR with Unlimited Capture Range,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 9, pp. 4061-4065, March 2024.
[9] R. Inti et al., “A 0.5-to-2.5 Gb/s Reference-Less Half-Rate Digital CDR With Unlimited Frequency Acquisition Range and Improved Input Duty-Cycle Error Tolerance,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3150-3162, Dec. 2011.
[10] W. Chen, Y. Yao, and S. Liu, “A 10.4-16-Gb/s Reference-Less Baud-Rate Digital CDR With One-Tap DFE Using a Wide-Range FD,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 11, pp. 4566-4575, Nov. 2021.
[11] Y. S. Yao, C. C. Huang, and S. I. Liu, “A Wide-Range FD for Referenceless Baud-Rate CDR Circuits,” IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 69, no. 1, pp. 60-64, Jan. 2022.
[12] N. H. Tho, H. J. Lee, T. J. An, and J.-K. Kang, “A 0.32 - 2.7 Gb/s Reference-less Continuous-rate Clock and Data Recovery Circuit with Unrestricted and Fast Frequency Acquisition,” IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 68, no. 7, pp. 2347-2351, July 2021.
[13] M. H. Pham, T. Q. Nguyen, and H. T. Nguyen, “Wide-band Clock and Data Recovery Circuit with UP Pulse Selector,” Journal of Science and Technology on Information and Communications, vol. 2, no. 1, pp. 42-48, Aug. 2021.
[14] H. T. Nguyen, T. H. Mai, and T. Q. Nguyen, "A 1 – 11.2 Gb/s Referenceless Continuous-Rate CDR with Fast Frequency Acquisition," in International Conference on Green and Human Information Technology, Viet Nam, Jan. 23-25, 2024, pp. 129-132.
[15] T. Q. Nguyen et al., “A Improved Loss of Lock Detector for Wide-band CDR in 28nm CMOS PROCESS,” in REV-ECIT, Ha Noi, Viet Nam, Dec. 2023, pp. 455-458.
[16] B. Razavi, Design of Integrated Circuits for Optical Communication Systems, McGraw-Hill, New York, 2016.
[17] A. Martin, Cadence Design Environment, New Mexico State University, Oct. 2002.
DOI: https://doi.org/10.34238/tnu-jst.12083
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





